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Di-Higgs production at higher energies
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arXiv : 1910.00012

Major backgrounds are t-tbar, QCD



3

Recent ML application in HH study
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CMS PAS B2G-21-001

 tagging is done using ParticleNet (GNN network)H → bb̄
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Classify events and scan the signal significance 
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Significance vs Mass
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Event classification using GNN 
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For boosted di-Higgs production we look for two Ak-08 jets with track 
subjets

pic credit : https://francis.naukas.com/2014/08/22/el-campo-de-higgs/



6

Event as a graph 
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Locate all the R=0.8 PF jets and 0.4 track jets in the  plane. 

Connect the k-NN neighbour through edges. 

For each nodes : assign 4-vector + two and one subjettiness observables. 

Use this graph representation for the events to be fed in GNN. 

η , ϕ

node features : (px, py, pz, E, two_sub, one_sub)
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The graph network https://arxiv.org/pdf/1801.07829.pdf
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In a graph, each node can “learn” about the state of neighboring node

through message passing operation
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https://arxiv.org/pdf/1801.07829.pdf
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The graph network https://arxiv.org/pdf/1801.07829.pdf
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The graph network https://arxiv.org/pdf/1801.07829.pdf
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After  p message passing layers ,  the q-th node has following energy representation  : 

( Eq, EL1
q , EL2

q , …, ELp
q ) MLP [psig, pbkg]

Sanmay Ganguly (ICEPP) Snowmass EF Meeting
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Signal vs QCD bkg separation using GNN 
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Evaluated on test signal sampleEvaluated on test bkg sample
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Discussion 
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Ultra boosted Di-Higgs production is an interesting physics case study for FCC


We are performing a feasibility study with a ML (GNN) based method 

to increase the signal sensitivity. 


Initially looking into event classification : a demerit of the method would be no trivial 

way to extract the calibration factors. 


Eventually, will use all the object level features in order to properly evaluate scale factor

for the events. 

       Representing events as heterograph might appear handy in this context. 

      Will perform comparison of different NN models. 


Finally we wish to build an interpretable NN pipeline in order to relate individual physics

observables which contribute towards the NN performance. 
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Backup 
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Classify events and scan the signal significance 
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